Progress on CC π^0 Filters #### Overview - CC π^0 applications and history - Revision of Laura J.'s filter - I use May06 MC to plot variables that can distinguish CC π^0 s from other events. - Retune cuts based on NUANCE number, as well as "effective" CC π^0 s - Visible hadronic energy study - Filter performance - Efficiency/purity - Data to MC comparisons ## Applications of CC π^0 studies - There are few existing CC π^0 cross section measurements, especially on carbon targets. - CC π⁰ events are background for MiniBooNE neutrino oscillation analysis - CC π^0 events come from resonant scattering only - Helps with coherent CC π^+ cross section studies #### CC π^0 s in the detector - 3.8% of all neutrino interactions have the CC π^0 NUANCE number (Cross sections May 06 baseline). - 3.3% are "effective" CC π^0 interactions (My May06 studies; ~500K events). - Result in exactly one CC π^0 directly, or through a final state interaction (FSI) in the nucleus. - Example: π^+ converts to π^0 (reverse also occurs) - NUANCE number is ignored when speaking of effective π^0 s. ### Characterizing the Events We don't have a 3-ring fitter, which makes reconstructing these events a challenge given our current tools ## Identifying effective CC π^0 s - Jon Link's code for NC π^0 (not yet submitted to the framework). Requires the following from MonteCarloEVNTChunk: - Exactly 1 π^0 that exits the nucleus - Two gammas with energies consistent with π^0 ancestor (Dalitz decay is taken into account) - No other mesons in the event - Additional CC criteria - One μ⁻ and one e⁻ #### Characterizing the events (cont.) Basic cuts to reject cosmics and leave only CC events: ``` StancuVars_nchunks = 2 (number of subevents) 21 < THits[1] < 179 (2nd subevent tank hits) Qtot[1] < 295 (2nd subevent total charge) SCI[1] < 7 (2nd subevent stancu sci. light) VHits[0] and VHits[1] < 6 (1st and 2nd subevent veto hits) 4400 < AvgTTim[0] < 6200 (Average tank hit time) Rvtx[0] < 500 (Stancu vertex radius) ``` - 24.4% of NUANCE CC π^0 pass (in MC) - 25.1% of effective CC π^0 pass - All of the following plots have these cuts #### Some changes between March05 and May06 Monte Carlo Laura J. designed her filter with the March05 MC. Since then, the MC was changed to give better data agreement # May06 MC: Reconstructed π⁰ mass StancuPi0Chunk_mass[0] NUANCE Effective $$m\pi^0 = \sqrt{(2E_1E_2(1-\cos\theta_{12}))}$$ #### May06 MC: Maximum -log(likelihood) value OneTrackChunk_F[0] # Scintillation flux TStancuFlux_SCI[0] # Scintillation flux vs. Cerenkov flux SCI[0] (y-axis) vs. CER[0] (x-axis #### **NUANCE** #### Effective In CC π^0 events, both muon and π^0 lead to more sci flux Lends itself to "slanted" cut # T-likelihood (0.4<cosθ < 0.5) StancuVars_Emu_tlb45[0] NUANCE Effective Red peaks extend above the graphs # Other characterizations that separate CC π^0 from background - Fraction of Cerenkov light in least energetic ring is larger on average (StancuPi0_fcer) - Reconstructed muon track length is shorter relative to total event energy - CC π⁰s are more energetic and deposit more Cerenkov light ### Visible hadronic energy - It is calculated by subtracting the energy of the muon in CC events from the total visible energy in the first subevent. - This value will hereafter be referred to as Δ_{F} . - Should be close to 0 for QE events - Should be small for π^+ events - Should be higher for π^0 events - Richard Imlay proposed cutting on this value # Calculating Δ_{E} - Record visible energy of first subevent: StancuFull_E[0] - Muon energy calculated from range - Calculate track length - Divide by oil density to get range - Use Morgan's lookup table (in ccpipRecon) to convert range to energy